ASME Forum 2001

Optimization Studies for Integrated Solar Combined Cycle Systems

Bruce Kelly
Nexant Inc., A Bechtel Technology & Consulting Company

Ulf Herrmann
FLABEG Solar International GmbH

Mary Jane Hale National Renewable Energy Laboratory

Integrated Solar Combined Cycle System

Thermodynamic and Economic Benefits

- Incremental Rankine cycle efficiencies are 95 to 120 percent those of a solar-only plant, and up to 105 percent those of a combined cycle plant
- Daily steam turbine startup losses are eliminated
- Incremental Rankine cycle power plant costs are
 25 to 75 percent those of a solar-only plant

Combined Cycle Plant

- 154 MWe General Electric PG7241(FA) gas turbine-generator (25 °C, 600 m), with dry, low NOx combustors and fueled by natural gas
- 3 pressure heat recovery steam generator: 100 bar and 565 °C; 28 bar and 565 °C; and 4 bar and 290 °C
- 90 MWe single reheat steam cycle

Annual Performance Model

- Combined cycle plant modeled with GateCycle®
- Brayton cycle: Electric power output and fuel use as functions of ambient temperature
- Rankine cycle: Electric power output as a function of ambient temperature and collector field thermal input
- Hourly direct normal radiation and ambient temperature file for Barstow, California

Annual Performance Model (Continued)

- Collector field output: Direct normal radiation; sun position; collector optical efficiency; receiver thermal efficiency; and piping thermal losses
- Hour by hour calculation of collector field output, Brayton cycle output, fuel use, and Rankine cycle output
- 8,760 hour per year operation

Solar Thermal Energy Use

- Low, intermediate, and high pressure saturated and superheated steam production, with steam returning to heat recovery steam generator
- Intermediate pressure superheated steam production, with steam returning to gas turbine combustor
- Oil-to-flue gas heat exchanger sections in heat recovery steam generator

Solar Thermal Energy Use (Continued)

- The most efficient use of solar energy is high pressure, saturated steam production
- Rankine cycle conditions are unchanged from those in conventional plants, yet solar thermal-toelectric conversion efficiencies are higher than in conventional plants

Heat Transfer Diagram for Combined Cycle Plant

ISCCS with Small Solar Input

Thermodynamic Benefits

- Joule of energy at 500 °C performs more work than a Joule at 400 °C
- Largest Rankine cycle temperature differences occur in high pressure evaporator of the heat recovery steam generator
- Solar thermal input, if moderate, reduces average temperature difference between turbine exhaust gas and Rankine cycle working fluid
- Solar input improves conversion efficiency of (much larger) fossil input to Rankine cycle

ISCCS with Large Solar Input

Inherent Limits

- Small solar input
 - Offsets primarily saturated steam production
 - Rankine cycle work = $\int v \, dp$
 - Steam turbine part load ΔP is 80 to 90 percent of full load ΔP , and evening efficiency penalty is small
- Large solar input
 - Offsets saturated steam production and feedwater preheating
 - Steam turbine part load ΔP is 50 to 75 percent of full load ΔP , and evening efficiency penalty is larger

Benefits and Limits

Live and Reheat Steam Conditions

- Steam flow rates are highest during solar operation; turbine operates at design pressure during the day, and at reduced pressures overnight
- Superheater and reheater can be sized for:
 - Solar operation, with attemperation required at night
 - Evening operation, with temperature decay during solar periods

Live and Reheat Steam Conditions

Heat Exchangers Sized for Solar Operation

	Live steam	Live steam
	pressure, bar	temperature, °C
Solar Operation	125	565
Evening Operation	70 - 125	565

Heat Exchangers Sized for Evening Operation

	Live steam	Live steam
	pressure, bar	temperature, °C
Solar Operation	125	450 - 565
Evening Operation	70 - 125	565

Live and Reheat Steam Conditions

- Heat exchangers sized for solar operation
 - Highest solar thermal-to-electric conversion efficiencies
 - Annual solar contributions up to 6 percent; limited by feedwater attemperation between first and second superheater stages
- Heat exchangers sized for evening operation
 - Less complex control system
 - Annual solar contributions up to 9 percent; limited by minimum allowable ratio of 0.4 for continuous live steam pressure to design pressure

Solar Contributions and Efficiencies

- 32 to 33 percent net solar thermal-to-electric conversion efficiencies for solar-only parabolic trough plants
- Integrated Plants
 - -40 to 42 percent net solar conversion
 efficiencies with annual solar contributions of
 1 to 2 percent
 - -32 to 35 percent net efficiencies with solar contributions up 9 percent

Solar Contributions and Efficiencies

- Integrated Plants (Continued)
 - Unit capital and operating costs for the incremental Rankine cycle plant are lower than for the complete Rankine cycle plant in a solaronly facility
 - Economic annual solar contributions may be as large as 12 percent

Conclusions

- Incremental Rankine cycle efficiencies are higher than those in a solar-only plant, and can be higher than those in a combined cycle plant
- Incremental Rankine cycle power plant costs are 25 to 75 percent those of a solar-only plant
- Offers the lowest cost of solar electric energy among hybrid options